TECHNICAL BULLETIN

CALIBRATION PROCEDURE FOR

SWEEP GENERATORS

AN/USM-308(V), AN/USM-308(V)1, AN/USM-308(V)2, AND AN/USM-308(V) 3, INCLUDING GENERATOR SUBASSEMBLIES MX-8333(P)/USM-308(V), MX-8364(P)/USM-308(V), AND MX-8364A(P)/USM-308(V) WITH ELECTRONIC TEST EQUIPMENT PLUG-IN UNITS PL-1239/USM-308(V), PL-1239A/USM-308(V), PL-1240/USM-308(V), PL-1241 \USM-308(V), PL-1241A/USM-308(V), PL-1242/USM-308(V), PL-1243/USM-308(V), AND PL-1304/USM-308(V) A N D

HEWLETT PACKARD SWEEP OSCILLATORS

MODELS 8690A AND 8690B

INCLUDING

H-P RF PLUG-IN UNITS, MODELS 8691A, 8691A OPT 200, 8692A,

8693A, 8693A OPT 200, 8693B, 8694A. H01-8694A(OPTION 100),

H02-8694A(OPT10N 200), 8694B, H02-8694B, 8695A, 8696A, $8697 \mathrm{~A}, \quad 8698 \mathrm{~A}, \quad 8698 \mathrm{~B}, 8699 \mathrm{~B}, \quad \mathrm{AND} 87-07 \mathrm{~A}$,

A N D
CALIBRATORS

K04-8690A AND 11531A

DEPARTMENT OF THE ARMY TECHNICAL BULLETIN

> CALIBRATION PROCEDURE FOR SWEEP GENERATORS
> AM/USM-308(V), AN/USM-308(V)I, AN/USM-308(V)2, AND AN/USM-308(V)3, (NSN 6625-00-283-9766) INCLUDING GENERATOR SUBASSEMBLIES MX-8333(P)/USM-308(V) (NSN 6625-00-766-7799) MX-8364(P)/USM-308(V), AND MX-8364A(P)/USM-308(V)
> (NSN 6625-00-442-3470)
> WITH ELECTRONIC TEST EQUIPMENT PLUG-IN UNITS PL-1239/USM-308(V) AND PL-1239A/USM-308(V) (NSN 6625-00450-7594)
> PL-1240/USM-308(V) (NSN 6625-00-165-1263)
> PL-1241/USM-308(V) AND PL-1241A/USM-308(V)) (NSN 6625-00-453-3143)
> PL-1242/USM-308(V) (NSN 6625-00-251-5212), PL-1243/USM-308(V)
> (NSN 6625-00-422-4311)
> AND PL-1304/USM-308(V) (NSN 6625-00-444-2327)
> AND HEWLETT PACKARD SWEEP OSCLLATORS MODELS 8690A (NSN 6625-00-928-0364)
> AND 8690B (NSN 6625-00-442-3470)
> INCLUDING

RF PLUGIN UNITS, MODELS 8691A AND 8691A OPT 200 (NSN 6625-00-482-1742) 8692A (NSN 6625-00-195-6765), 8693A AND 8693A OPT 200 (NSN 6625-00-118-6728)

8693B (NSN 6625-00-118-6728), 8694A AND 8694B (NSN 6625-00-444-2327)
HO1-8694A OPT 100 (NSN 6625-00-159-2224) HO2-8694A OPT 200 (NSN 6625-00-689-6787)
HO2-8694B (NSN 6625-00-237-4413), 8695A (NSN 6625-00-107-2096),
8696A (NSN 6625-00-137-6794), 8697A (NSN 6625-00-413-5625)
8698A AND 8698B (NSN 6625-00-435-3143) 8699B (NSN 6625-00-251-5212)
AND
8707A (NSN 6625-00-424-4369)
AND CALIBRATORS KO4-8690A (NSN 6625-00-438-9089) AND 11531A
(NSN 6625-00-450-7594)

Headquarters, Department of the Army, Washington, DC 22 April 1987

TB 11-6625-2402-35/1, 8 May 1973, is changed as follows:

Page 12, Table 2-3. In column 2, line 7, add after "zero".

Page 35. Delete tables 6-3 and 6-4. Paragraph 6-4 a (5) through (10) is superseded as follows
(5) Set MANUAL SWEEP control fully ccw. Record electronic counter indication.
(6) Set MANUAL SWEEP control fully CW. Record electronic counter indication.
(7) Subtract value recorded in (5) above from value recorded in (6) above. Sweep width will be between 0.97 and 1.03 MHz .
(8) Set SCALE switch to X1.
(9) Adjust START/CW control for a $50.00-\mathrm{MHz}$ indication on electronic counter.
(10) Repeat (5) through (7) above except sweep width will be between 9.7 and 10.3 MHz.

By Order of the Secretary of the Army:
JOHN A. WICKHAM, JR
General, United States Army Chief of Staff

Official:

R. L. DILWORTH

Brigadier General, United States Army The Adjutant General

Distribution:
To be distributed in accordance with DA Form 12-34C, Block No. 319, requirements for calibration procedures publications.

DEPARTMENT OFTHEARMYTECHNICALBULLETIN

> CALIBRATION PROCEDURE FOR SWEEP GENERATORS
> AM/USM-308(V), AN/USM-308(V)1, AN/USM-308(V)2, AND AN/USM-308(V)3, (NSN 6625-00-283-9766)
> INCLUDING GENERATOR SUBASSEMBLIES
> MX-8333(P)/USM-308(V) (NSN 6625-00-766-7799)
> MX-8364(P)/USM-308(V), AND MX-8364A(P)/USM-308(V) (NSN 6625-00-442-3470)
> WITH ELECTRONIC TEST EQUIPMENT PLUG-IN UNITS PL-1239/USM-308(V) AND PL-1239A/USM-308(V) (NSN 6625-00-450-7594) PL-1240/USM-308(V) (NSN 6625-00-165-1263)
> PL-1241/USM-308(V) AND PL-1241A/USM-308(V) (NSN 6625-00-453-3143)
> PL-1242/USM-308(V) (NSN 6625-00-251-5212), PL-1243/USM-308(V) (NSN 6625-00-422-4311)
> AND PL-1304/USM-308(V) (NSN 6625-00-444-2327)
> AND HEWLETT PACKARD SWEEP OSCILLATORS MODELS 8690A
> (NSN 6625-00-928-0364)
> AND 8690B (NSN 6625-00-442-3470)
> RF PLUG-IN UNITS, MODELS 8691A AND 8691A OPT 200 (NSN 6625-00-482-1742) 8692A (NSN 6625-00-195-6765), 8693A AND 8693A OPT 200 (NSN 6625-00-118-6728) 8693B (NSN 6625-00-118-6728), 8694A AND 8694B (NSN 6625-00-444-2327)
> 8707A (NSN 6625-00-424-4369)
> AND CALIBRATORS KO4-8690A (NSN 6625-00-438-9089) AND 11531A (NSN 6625-00-450-7594)

Headquarters, Department of the Army, Washington, DC
7 August 1984

[^0]TB 11-6625-2402-35/1, 8 May 1973, is changed as follows:

The title is superseded as shown above.
Page 3, paragraph 1-2. In lines 7 and 8, change address to read "Commander, US Army TMDE Support Group, ATTN: DRXTMLPP, Redstone Arsenal,AL 35898."

Paragraph 1-3b, PL-1241A/USM-308(V) (HP 8698B). Make the following changes in the specifications:

Frequency range	4 to 11 MHz , low band; 4 to 110 MHz high band
Frequency accuracy	Low range: $\pm 1 \%$ of frequency $\pm 50 \mathrm{kHz}$
	High range: $\pm 1 \%$ of Frequency $+500 \mathrm{kHz}$

Uncalibrated RF output -15 dBm minimum

Page 11. Paragraph $2-2 \mathrm{a}(7)$ is superseded as follows:
(7) Multimeter indication will be greater than indication obtained in (4) above.

Add note after paragraph 2-2a(7) as follows:

NOTE

This circuit contains a diode. When the diode is forward biased, the amount of resistance measured will depend on the sensitivity and range of the meter being used.

Page 12, table 2-2. Lines 1, 2, and 3 are superseded as follows:

SWPREF AM	∞
-300V	9.5 K to 10.5 K
+275V	28 K to 34 K

Table 2-2, footnote. The footnote is deleted entirely.

Table 2-3. Lines 2,3, and 7 are superseded as follows:

-300 V	9.5 K to 10.5 K
+275V	28 K to 34 K
HELIX(10)	ZERO

Table 2-3. The following footnote added:
*This indication applies to model 8690A only. Also see note following paragraph 2-2a(7) above.

Table 2-5. Delete "SWP REF AM +36 +40 -4" from table.

Paragraph 2-3a(2). In line 5, change "(1. 4)" to read "(1-3)".

Paragraph 2-3a(6) is superseded as follows:
(6) Set sweep oscillator controls as follows:
(a) LINE switch to RF.
(b) START/CW pointer to 38 V scribe
line.
(C) STOP/ $\Delta \mathrm{l}$ F pointer to 73 V scribe
line.
(d) SWEEP SELECTOR to CW.
(e) AMPLITUDE MODE pushbutton. all released.
(f) ACL pushbutton released.
(g) SWEEP TIME (SEC) control to .01-
. 1.
(h) VERNIER control to maximum clockwise (line sync).
(i) FUNCTION
pushbutton
START/STOP in (remaining 3 released).
(j) UUT FUNCTION SELECTOR switch to SWP REF AM.

Add paragraphs $2-3 \mathrm{a}(7)$, (8), and (9) as follows:
(7) Voltmeter (1-2) will indicate between +36 and +40 V dc.
(8) Set UUT SWEEP SELECTOR switch as appropriate and FUNCTION SELECTOR switch to positions listed in table 2-5 and observe that the indications are within prescribed limits.
(9) Set sweep oscillator (1-5) SWEEP SELECTOR control to AUTO. Oscilloscope (1-4) will indicate -4 V pulse as in figure 2-1.

Page 15, paragraph 3-2g(3). In line 1, change "All" to read "All".

Page 16, paragraph 3-4a(3). In line 2, change 'AMP" to read "RMP".

PARAGRAPH 3-6A(7)(b). line 2, change counterclockwise" to read "clockwise".

Page 18 paragraph 3-9(1)e. In line 1, change. "A 11" to read "All".

Page 19, paragraph 3-1 la(I)(c). In line 1, change "STOP/ Δ F" to read "START/CW" and "73 V" to read" 10 V".

Page 29, paragraph 5-3a(2)(a). In line 2, delete "(MANUAL for items listed in table 52C)".

Paragraph 5-3a(2)(b). In lines 2 and 3, delete "(FUNCTION $\Delta \mathrm{F}$ pressed for items listed in table 5-2C)".

Page 33, SECTION VI title. In line 3, change "8690A and 8690B" to read "8698A and 8698B".

Page 35, paragraph 6-6a(2)(d). In line 1, Change " 100 " to read " 111 ".

By Order of the Secretary of the Army:
JOHN A. WICKHAM, JR.

Official:

ROBERT M. JOYCE
Major General, United States Army
Major General, United States Army
The Adjutant General

Page 36, paragraph 6-7a(3)(a). In line 1, change " $X 1$ " to read " $X .1$ ".

Paragraph 6-7a(3)(c). In line 1, change "clockwise" to read "counterclockwise".

Paragraph 6-7a(4). In line 1, change "2.23" to read "0.223".

Page 38, paragraph 6-10a(4). In line 2, change " 0.3 mw " to read " 0.03 row".

Paragraph 6-10a(6). In line 2, change " 0.3 mw" to read " 0.03 row".

Page 41, table 7-1. In column 3, line 12, change "CN-2171/U" to read "CN-1271/U".

Page 42. Paragraph 7-3a(5) is superseded as follows:
(5) Output power will not be less than +13 dBm and flatness will be less than 7 dB .

Paragraph 7-3a(9) is superseded as follows:
(9) Output power will not be less than +8 dBm and flatness will be less than +3 dB .

Paragraph 7-4a(3). Add at end of sentence "and set stop control to 4 GHz ."

General, United States Army Chief of Staff
Distribution:
To be distributed in accordance with DA Form 12-34C, Block No. 319, requirements for calibration procedures publications.

CALIBRATION PROCEDURE

 FORSWEEP GENERATORS
AN/USM-308(V), AN/USM-308(V)1, AN/USM-308(V)2, AND AN/USM-308(V)3, INCLUDING GENERATOR SUBASSEMBLIES MX-8333(P)/USM-308(V), MX-8364(P)/USM-308(V), AND MX-8364A(P)/USM-308(V)
WITH ELECTRONIC TEST EQUIPMENT PLUG-IN UNITS PL-1239/USM-308 (V), PL-1239A/USM-308(V), PL-1240/USM-308(V) , PL-1241/USM-308(V), PL-1241A/USM-308(V), PL-1242/USM-308(V),

PL-1243/USM-308(V), AND PL-1304/USM-308(V) AND
HEWLETT PACKARD SWEEP OSCILLATORS
MODELS 8690A AND 8690B INCLUDING H-P RF PLUG-IN UNITS, MODELS 8691A, 8691A OPT 200, 8692A, 8693A, 8693A OPT 200, 8693B, 8694A, HO1-8694A (OPTION 100), H2-8694A (OPTION 200), 8694B, H2-8694B, 8695A, 8696A, 8697A, 8698A, 8698B, 8699B, AND 8707A, AND
CALIBRATORS
K04-8690A AND 11531A
Section】. INTRODUCTION AND DESCRIPTION.
Purpose and scope
Report of technical bulletin improvements.
Descriptive data.
CALIBRATION OF CALIBRATORS PL-1239/USM-308(V) PL-1239A/USM-308(V) (HP MODELS K04-8690A AND 11531A)
Equipment required
Resistance
Voltage and wavefor
III. CALIBRATION OF SWEEP GENERATOR SUBASSEMBLIES MX-8364(P)/USM-
308(V) AND MX-8364A(P)/USM-308 (V) (HP MODELS 8690.1 AND 8690B)
Equipment required
Preliminary procedure
Ramp amplitude.
Ramp
zero 16
Reciprocal zero . .

Paragraph

Section IV. CALIBRATION OF CONTROL UNIT PL-1243/USM-308(V) AND RF UNIT

 HOLDER MX-8333(P)/USM-308(V) (HP MODELS 8706A AND 8707A)
V. CALIBRATION OF ELECTRONIC TEST EQUIPMENT PLUG-IN UNITS PL-1240/USM-308(V), PL-1304/USM-308 (V), AND HP MODELS 8691A, 8691A OPT 200, 8692A, 8693A, 8693A OPT 200, 8693B, 8694A, HO1-8694A, HO2-8694A, 8694B, 8695A, 8696A, AND 8697A

VI. CALIBRATION OF ELECTRONIC TEST EQUIPMENT PLUG-IN UNITS PL-1241/USM-308(V) (HP MODELS 8698A AND 8698B)

Frequency range and accuracy $\frac{6-3}{\frac{6-3}{6-4}}$

Linearity 6-6
Power output 6-7
Flatness i. 6-8

Internal square wave...-............................ 6-12
Crystal oscillator 6-13
VII.CALIBRATION OF ELECTRONIC TEST EQUIPMENT PLUG-IN UNIT PL-
1242/USM-308(V) (HP MODEL 8699B)

SECTION I INTRODUCTION AND DESCRIPTION

1-1. Purpose and Scope

This bulletin provides information, equipment setups, and adjustment locations for the periodic calibration of Sweep Generator Calibrators PL-1239/USM-308(V), PL-1239A/USM-308(V), Sweep Generators AN/USM408(V), AN/USM308(V)1, AN/USM-308(V)2, and AN/USM308 (V) 3 , and the associated plug-in units comprising the (V) variable nomenclature. Since it is to be used by personnel trained and qualified in the use of calibration equipment, detailed instructions pertaining to operation and use of the calibration equipment is not included.

1-2. Report of Technical Bulletin Improvements

The reporting of errors, omissions, and recommendations for improving this bulletin by the individual user is encouraged. Reporta should be submitted on DA Form 2028 (Recommended Changes to Publications) and forwarded direct to Commander, US Army Electronics Command, ATTN: AMSEL-MA-CRA, Fort Monmouth, NJ 07708.

1-3. Descriptive Data

Sweep Generators AN/USM-308(V), AN/USM308(V)1, AN/USM(V)2, and AN/USM-308(V)3 consist of Generator Subassembly MX-8333(P)/ USM-308(V) and Generator Subassembly MX-8364(P)/USM-308(V) or MX-8364A(P)/USM308 (V) and various plug-in units that govern the frequency range and power output of this broad and narrow band sweep oscillator. Each plug-in unit has a plastic frequency scale that is snapped in the main. frame while being used. The RF plug-in units may be used individually by being inserted into main frame MX-8364 (P)/ USM-308(V), or collectively as shown in figure 1 with Plug-In Unit PL-1243/USM-308 (V) inserted into the mainframe. Calibrator PL-1239/ USM-308(V) or PL-1239A/USM-308 (V) is also with the configuration and enables checking and adjusting by supplying substitute resistive loads and voltage outlets. Additional data is listed in a, b, and c as follows:
a.. Identification. The identification and physical description of the sweep generator set is contained in table 1-1

Table 1-1. Component Identification

Nomenclature	Type Number	Mfg. Part Number		$\begin{aligned} & \text { Weight } \\ & \text { (approx) } \end{aligned}$
Generator subassemblies	MX-8333(P)/USM-308(V) MX-8364(P)/USM-308(V) MX-8364A(P)/USM-308(V)	HP 8707A HP 8690A HP 8690B	$\begin{aligned} & 18 \times 17 \times 10 \\ & 18 \times 17 \times 9 \\ & 18 \times 17 \times 9 \end{aligned}$	28 lbs 36 lbs 36 lbs
Electric test equipment plug-in Units.	PL-1239/USM-308(V) PL-1239A/USM-308(V) PL-1240/USM-308(V) PL-1241/USM-308(V) PL-1241A/USM-308(V) PL-1242/USM-308(V) PL-1243/USM-308(V) PL-1304/USM-308(V)	HP K04-S690A HP 11531A HP 8693B HP 8698A HP 8698B HP 8699B HP 8706A HP 8694B	$\begin{array}{\|llllll} 1 & 7 & \times & 7 & \times & 5 \\ 1 & 7 & \times & 7 & \times & 5 \\ 1 & 7 & \times & 7 & \times & 5 \\ 1 & 7 & \times & 7 & \times & 5 \\ 1 & 7 & \times & 7 & \times & 5 \\ 1 & 7 & \times & 7 & \times & 5 \\ 1 & 7 & \times & 7 & \times & 5 \\ 1 & 7 & \times & 7 & \times & 5 \end{array}$	16 Ibse 16 lbse 16 lbs 15 lbs 16 lbs 16 lbs 16 lbs 13 lbs
	None applied.	HP 8691A HP 8692A HP 8695A HP 8696A HP 8697A	$\begin{array}{lllll} 1 & 7 & \times & \times & 5 \\ 1 & 7 & \times & 7 & \times \\ 1 & 7 & \times & 7 & \times \\ 1 & 7 & \times & 7 & \times \\ 1 & 7 & \times & 7 & \times \\ 1 \end{array}$	16 lbs 16 lbs 16 lbs 16 lbs 16 lbs

Figure 1-1. Sweep Generator AN/USM-308(V) (top) and RF Unit Holder MX-8333(P)/USM-308(V) (bottom) shown with four various plug-in.
b. Specificatiom. MX-8364(P)/USM-308(V) and MX-8364A(P)/USM-308(V) specifications marked with an asterisk are for information only and are not necessarily verified in this procedure.

Maximum range . . .	Full band for modulation frequencies up to 160 Hz (approximately 17 v p-p input), decreases to about
20\% of the band for 3 kHz	
modulation.	

Input impedance . Approximately 100,000 ohms. MX-8333(P)/USM-308 (V) with PL-1243/USM-308 (V):

PL-1239/USM-308(V) and PL-1239A/USM-308 (V):
Resistance 4.5 ohms to 2 megahms
Voltage dc +276 to -300.
Ripple Less than 160 RMS miniVolts.
PL-1240/USM-308(V):
Frequency range 4 to 8 GHz .
Frequency accuracy 20 MHz .
aximum leveled At least 15 mw .
RF power control PIN line.
Frequency stability:
With temperature. $\pm 0.01 \% /{ }^{\circ} \mathrm{C}$.
line voltage.
'With 10-db power $\quad \pm 1 \mathrm{MHz}$. level change.
Residual FM ------- <50 kHz peak.
60 ohme ternal leveling (ex cluding detector and Coupler variation). leveled. tire band.

Residual AM At least 40 db below CW output.
Spurious signals:
Harmonics.
At least 20 db below CW output.
Nonharmonics. At least 40 db below CW output.
*Reference output Direct-coupled voltage proportional to RF frequency, approximately 0 v at the low end of the band, increasing approximately 40 v/octave, output impedance, 30,000 ohms.
PL-1304/USM-308(V):
Frequency range 8.0 to 12.4 GHz .
Frequency accuracy .. $\pm 40 \mathrm{MHz}$.
Maximum leveled At least 30 mw . power.
RF power control PIN line.
Frequency stability:
With temperature . $\pm 0.01 \% /{ }^{\circ} \mathrm{C}$
With 10% change in $\pm 1 \mathrm{MHz}$.
line voltage.
*With $10-\mathrm{db}$ power $\pm 1 \mathrm{MHz}$. level change.
Residual FM
*Output impedance
*Power variation, external leveling (excluding detector and coupler variation).
Power. variation un leveled.
*Residual AM
Less than 10 db over the entire band.
Aat least 40 db below CW output.
*Spurious signals:
Harmonics
At least 20 db below CW output.
Nonharmonics . . At least 40 db below CW output.
*Reference output . . . Dimet-coupled voltage proportional to RF frequency, approximately 0 v at the low end of the band, increasing approximately 40 v/octave; output impedance. $30,000 \mathrm{D}$.

PL-1241-USM-308(V):
Frequency range
0.1 to 11 MHz or 1 to 110 MHz (selected by front panel switch).
Frequency accuracy . $\quad 0.1$ to $11 \mathrm{MHz}, \pm 1 \%$ or ± 10 kHz , whichever is greater; 1 to $110 \mathrm{MHz}, \pm 1 \%$ or $\pm 100 \mathrm{kHz}$, whichever is greater.
Linearity
$\pm 0.5 \%$ of sweep width.

* Residual FM 0.1 to $11 \mathrm{MHz},<150 \mathrm{~Hz}$ peek. 1 to $110 \mathrm{MHz},<500$ Hz peak.

Modulation: External FM: Frequency re-	DC to $500 \mathrm{kHz} \pm 30 \mathrm{MHz}$ from DC to 100 Hz and sponse.
$\pm 3 \mathrm{MHz}$ to 200 kHz.	
Internal *External AM	950 to 1050 Hz. DC to 50 kHz.

Specifications for commercial models HP 8691A, 8692A, 8695A, 8696A, and 8697A are listed in table 1-2
c. Calibration Program.

Interval of calibration . . In accordance with TB 236.

Time required for calibration 20 hours (approximately)

1-4. General Instructions

a. Calibration Data Cord. During the performance of this procedure, annotate DA Form 2416 in accordance with TM 38-750.
b. Unit Under Test. The item referred to as the UUT (Unit Under Test) will be the item
listed in the title of each section. See table 1-1 for cross index.
c. Equipment Required. Each section throughout this procedure has an equipment required table containing a minimum use specifications column that applies to the item listed in the title of each section.

1-5. Differences Among Models

Differences are shown it table 1-1, paragraph 1-3b under specifications, and in parentheses in the text where different indications are to be observed. It is also to be noted that this equipment being commercial "off the shelf" and not manufactured to military specifications is subject to changes of any type per any specified Mock of serial numbers. If an indication received in the performance check is other than that specified, consult the yellow change sheets shipped with the commercial operation and service manual before applying a red tag to the instrument. Use the value listed in the change if applicable.

Table 1-2. Commercial Model Specifications

Modernumber	Frequencyrange	$\underset{\substack{\text { RF Power } \\ \text { control }}}{ }$	$\underset{\text { leveled }}{\text { Maximum }}$ power	Power 2varititionexternalleveling	$\begin{gathered} \text { Frequency } \\ \text { aceuracy } \\ \text { mat } \\ \text { powever } \\ \text { Dower } \end{gathered}$	Frequency atmbillty			Restdual
						$\underset{\substack{\text { With } \\ \text { Lemperature }}}{\substack{\text { and } \\ \text { and }}}$	$\begin{aligned} & \text { With } 10 \% \\ & \text { Chg in line } \\ & \text { voltage } \end{aligned}$	$\begin{gathered} \text { With power } \\ \text { level } \\ \text { change } \end{gathered}$	
HP 8691A	$1.4-2.5$ GHz	BWO Grid	100 mw	$\pm 0.2 \mathrm{db}$	$\pm 1 \%$	$\pm 0.01 \% /{ }^{\circ} \mathrm{C}$	$\pm 500 \mathrm{kHz}$	Less than $\pm 20 \mathrm{MHz}$ (for 6 db).	30 kHz peak.
HP 8692A	2-4 GHz	BWO Grid	70 mw	$\pm 0.2 \mathrm{db}$	$\pm 1 \%$	$\pm 0.01 \% /{ }^{\circ} \mathrm{C}$	$\pm 500 \mathrm{kHz}$	Less than $\pm 40 \mathrm{MHz}$ (for 6 db).	30 kHz peak.
HP 8695A	$10-15.5 \mathrm{GHz}$	BWO Grid	25 mw	$\pm 0.2 \mathrm{db}$	$\pm 1 \%$	$\pm 0.01 \% /{ }^{\circ} \mathrm{C}$	$\pm 10 \mathrm{MHz}$	0.25 GHz	150 kHz .
HP 8696A	$18-26.5$ GHz	BWO Grid	10 mm	$\pm 0.2 \mathrm{~dB}$	$\begin{aligned} & \pm 1 \% \text { over a } 6 \mathrm{~dB} \\ & \text { range. } \end{aligned}$	$\pm 0.01 \% /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{MHz}$	0.36 GHz with $10-\mathrm{db}$ power level change.	200 kHz peak.
HP 8697A	$26.5-40 \mathrm{GHz}$	BWO Grid	5 mw	$\pm 0.2 \mathrm{~dB}$	$\begin{aligned} & \pm 1 \% \text { over a } 6 \mathrm{~dB} \\ & \text { range. } \end{aligned}$	$\pm 0.01 \% /{ }^{\circ} \mathrm{C}$	$\pm 20 \mathrm{MHz}$	0.53 GHz with $10-\mathrm{db}$ power level change.	350 kHz peak.

SECTION II

CALIBRATION OF CALIBRATORS PL-1239/USM-308(V), PL-1239A/USM-308(V) (HP MODELS K04-8690A AND 11531A)

2-1. Equipment Required

Equipment required for calibration performance checks and adjustments is listed in table 2-1.

Table 2-1. Equipment and A coessuries

	Item (Identifcation No.) (A level Std.)	Minimum use -peciSication ${ }^{2}$	Calibraticu A!bipn:ent
1-1	Multimeter (7904729)	4.5 to 2.02 Megohms $\pm 2 \%$	Multimetcr ML-333/U (: Onega y wie? 217A) or Capuatis e Kridge. Whive tance and Fenishane Tre: Sel : A; URM. 90.
1-2	Dc voltmeter (7910448-1)	-300 to +275 volts $\pm 0.05 \%$	ME-202-li (J.eluke, mode: 80;B or Dana mode! 5600 ur 980̧ill.
1-8	Ac voltmeter (7910902)	-4 to +160 millivolts $\pm 3 \%$ of FS	ME-2C U CHP 410B or 410i!.
1-4	Oscilloscope	With calibrated sweep	AN/USM-140 (11F' 130 or 140 or other available oscilloscopes).
1-5	Sweep oscillator	Mainframe receptical	AN/USM-308(V) (HP 8690A or B).
1-6	Cable assembly	BNC plug to black and red banana plugs.	Radio Frequency Cable Assembly CG 3572/U (Pomona Electronics mode: 2241-C-36).
1-7	Cable amsembly (3 required) (10519140).	BNC plug to BNC plug	Radio Frequency Cable Assombly RC58A/U. (Pomons Electronics BNC-C-48).
1-8	Connector adapter (MS 35173)	BNC "T" type, 2 jacks one plug	UG-274B/U (Amphenol-Borg IPC 4200).
1-9	Test lead (2 required) (7907498).	24-inch, single banana to signle banana	(Pomona Electronics B-24).
1-10	Probe (2 required)	Test Probe to banana jack	Test Prod MX-8427/U (Pomona Flec tronics model 1589-2).

[^1] of alternate equipment. Satisfactory performance of alternate items shall be verified prior to use. All applicable equipment must bear evidence current calibration.

The instruments utilized in this procedure were selected from those known to ve availiable in Department of Defense Installations, and the listing by make or model number carries no implication of preference, recommendation, or approval by the Department of Defense for use by other agency. It is recognized that equivalent equipment produced by other manufacturers may be capable of equally satisfactory performance in the procedure.

NOTE

Do not install UUT into sweep oscillator or RF unit holder.

2-2 Resistance

a. Performance Check.
(1) Connect multimeter (1-1) to UUT DCVM connector with cable assembly (1-6).
(2) Set UUT FUNCTION SELECTOR switch to settings listed ir table 2-2. Multimeter indicates within specified limits.
(3) Connect multimeter to UUT SCOPE ACVM connector with cable assembly.
(4) Set UUT FUNCTION SELECTOR switch to settings listed in table 2-3. Multimeter indicates with specified limits.
(5) Set UUT FUNCTION SELECTOR switch to HELIX (10:1) /HELIX (1:1AC).
(6) Reverse banana plugs on multimeter.
(7) Multimeter indicates between 2 K ohms and 4 K ohms.
(8) Set UUT FUNCTION SELECTOR switch to - 6.3 V
(9) Connect multimeter to UUT test points listed in table 2-4, with 2 test leads (1-9) and 2 probes (1-10). Multimeter indicates within specified limits.
b. Adjustments. No adjustments can be made.

Table 2-2. Resistance Check.(DCVM Connector)

$\begin{aligned} & \text { UUT } \\ & \text { FUNCTION SELECTOR } \\ & \text { switch settings } \end{aligned}$	Multimeter indication (ohms)
SWP REF AM	
-300 V	9.5 K \propto^{1} to 10.5 K
+275 V	28.1 K to 31.9 K
+20 V	38 to 42
ANODE/START RMP	\propto
HELIX FDBK/STOP RMP	24.7 K to 27.3 K
HELIX (10:1) HELIX (1:1AC)	63.4 K to 69.5 K
COLL (10:1) BLANKING	198 K to 202 K
HELIX (10:1) HELIX OV'LD	63.4 K to 69.5 K

100 on some instruments.

Table 2-s. Resistance Check (SCOPE ACVM Connector)

$\begin{aligned} & \text { UUT } \\ & \text { FUNCTION SELECTOR } \\ & \text { switch settings } \end{aligned}$	Multimeter indication (ohms)
SWP REF AM	∞
-300 V	9.5 K to 10.5 K
$+275 \mathrm{~V}$	28.1 K to 31.9 K
$+20 \mathrm{~V}$	38 to 42
ANODE/START RMP	∞
HELIX FDBK/STOP RMP	∞
HELIX (10:1)/HELIX (1:1AC)	9.5 K to 10.5 K

FUNCTION SELECTOR switch settings	Multimeter indication(ohms)
COLL (10:1)/BLANKING	\propto
HELIX $(10: 1) /$ HELIX OV'LD	

Table 2-4. Resistance Checks

UUT test points	Multimeter indication (ohms)
P12 pin 13 and DCVM connector	4.5 to 5.5
P12 pin 13 and SCOPE ACVM	4.5 to 5.5
connector.	
P11 pin M and P11 pin P	9.9 K to 10.1 K
P11 pin N and ground	1.98 M to 2.02 M

NOTE
Install UUT in sweep oscillator (1-5).

2-3. Voltage and Waveforms

a. Performance Check.
(1) Connect voltmeter (1-2) to UUT DCVM jack with cable assembly (1-7).
(2) Connect UUT SCOPE ACVM jack to oscilloscope channel A input using a connector (1-8) and cable assembly ($1-7$). Connect cable assembly (1-7) from connector (1-8) to voltmeter (1-4).
(3) Turn sweep oscillator (1-5) LINE switch to STANDBY and allow approximately 1 minute for equipment warmup.
(4) Depress UUT TIME DELAY OVERRIDE pushbutton for about 5 seconds.
(5) Turn sweep oscillator LINE switch to RF.
(6) Set UUT FUNCTION SELECTOR switch to positions listed in table 2-5 and observe that the indications are within the prescribed limits.
b. Adjustments. No adjustments can be made.

Table 2-5. Voltage and Waveform Checks

UUT FUNCTION SELECTOh	Volimeter (volis) dication		Oscilloscope and AC voltmeter ripple in RMS millivolts
	minimum	maximum	(maximum indication)
SWP REF AM	+36	+40	-4
-300-300.	-280	-320	2
-6.3V-6.3V	-6.1	-6.5	8
+ 276V + 275V	+ 256	+ 294	2
+20V/+20V	+19	+21	1
ANODE/START RMP	+ 104	+ 116	159
HELIX FDBK STOP RMP	+ 33.3	+ 37.3	160
HELIX (10:1) /HELIX (1:1AC)	+112	+124 ${ }^{1}$	7
COLL(10:1) BLANKING.	+118	$+136.5^{3}$	-6

[^2]

Figure 2-1. Typical oscilloscope waveform.

SECTION III

CALIBRATION OF SWEEP GENERATOR SUBASSEMBLIES MX-8364(P)/USM-308(V) AND MX-8364A(P)/USM-308(V) (HP MODELS 8690A AND 8690B)

3-1. Equipment Required

Equipment required for calibration performance checks and adjustments is listed in table 3-1.
Table 3-1. Equipment and Accessories

	Tem	Minimun use specification	Calibration equipment
1-1	Autotransformer	105 to $125 \mathrm{vac}, \pm 3 \%$	Variable Power Transformer TF- $510 / \mathrm{U}$ (General Radio model W10- MT3A).
1-2	Calibrator	UUT plug-in unit	Electrical Teat Equipment Plug-In Unit PL-1239/USM-308(V) (Hew lett-Packard model K04-8690A)
1-3	Multmeter	0 to $\pm 300 \mathrm{vdc} \pm 0.1 \%$	Hewlett-Packard model 11531A. Multimeter ME-333/U (J-Omega model 217A).
1-4	Oacillascope	$0.5 \mathrm{v} / \mathrm{cmto6} \mathrm{v} / \mathrm{cm} \pm 3 \%$	Oscilloscope AN/USM-273 (Tektronix model 463),
1-5	voltmeter	0 to 6 mvac $\pm 1 \%$	Electronic .Voltmeter AN/USM-265 (Hewlett-Packard model 400EL-02).
1-6	Adapter	Tee, BNC plug to 2 BCN jacks.	Connector Adapter UG-274B/U (Amphenol model UG-274B/U).
1-7	Adapter	BNC jack to double banana plug	Connector Adapter UG1887/U (Pomona Electronics model 1289).
1-8	Cable assembly (8 required) . .	36-inch RG58C/U, BNC plug to BNC plug.	Pomona Electronics model BNC-C-36.
1-9	Adapter	Binding poet to BNC plug	Connector Adapter UG-1888/ (Po mona Electronic model 1296).
1-10	Test lead	24 inch, single banana to single banana .	Pomona Electronics model B-24 black.

WARNING

Voltages in excess of 1000 volts are present in UUT and may result in personnel injury or lose of life.

3-2 Preliminary Procedure

a, Install calibrator (1-2) and calibrator scale into UUT.
b. Energise equipment and allow sufficient time for equipment to warmup and stabilise.
c. Adjust autotransformer (1-1) output voltage control to minimum.
d. Connect UUT power cord to autotransformer.
e. Adjust autotransformer output voltage control for a meter indication of 115 vat.
f. Set UUT LINE switch to RF and allow a 15-minute warmup.
g. Position UUT controls as follows:
(1) START/CW, MARKER 1 START/CW, MARKER 2 STOP, and STOP/ A.F controls to 8 v on calibrator scale.
(2) SWEEP SELECTOR switch to CW.
(9) All AMPLITUDE MOD pushbuttons released.
(4) ALC pushbutton released.
(5) MANUAL SWEEP control fully counterclockwise.
(6) SWEEP TIME (SEC) switch to 10010.
(7) SWEEP TIME (SEC) VENIER control to LINE SYNC.
(8) INT SQ WAVE FREQ control fully counterclockwise.
(11) BLANKING (rear panel) to ON.
(10) FUNCTION START STOP pushbutton pressed.

3-3. Ramp Amplitude

a. Performance Check.
(1) Connect equipment as shown ir figure 3-1 without the oscilloscope.
(2) Position UUT controls as follows:
(a) SWEEP' SELECTOR switch to CW.
(b) FUNCTION START-STOP pushbutton pressed.
(c) START/CW control to 73 V on calibrator scale.
(3) Set calibrator FUNCTION SELECTOR switch to SWP REF AM.
(4) Multimeter indicates between 72.9 and 73.1 vdc.
b. Adjustments Adjust UUT 75 V RAMP ADJ R75 (fig. 3-2) for multimeter indication of 73.0 vdc.

3-4. Ramp Zero

a. Perfomance Check.
(1) Position UUT controls as follows:
(a) SWEEP SELECTOR switch to MANUAL.

Figure s-1. Sweep generator calibration, equipment setup

Figure s-2. Component assembly As.
(b) MANUAL SWEEP control fully clockwise.
(2) Connect multimeter to calibrator SCOPE ACVM connector with cable assembly (1-8) and adapter (1,7).
(3) Set calibrator FUNCTION SELECTOR switch to ANODE/START AMP.
(4) Multimetor indicates between -0.010 and +0.010 vdc (8690 A), or -0.100 and $0+.100$ vdc (8690B) .
b. Adjustments. Adjust UUT RAMP ZERO ADJ R53 (fig. 3-2) for multimeter indication of 0.00 vdc .

3-5. Reciprocal Zero

a. Performance Check.
(1) Turn UUT MANUAL SWEEP control fully counterclockwise.
(2) Set calibrator FUNCTION SELECTOR switch to HELIX FDBK STOP RMP.
(3) Multimeter indicates between -0.010 and +0.010 vdc $(8690 \mathrm{~A})$. or -0.400 and +0.400 vdc 8690B).
b. Adjustments. Adjust UUT R50 (fig. 3-2) for multimeter indication of 0.00 vdc .

3-6. Frequency Control (Low End)

a. Performance Check.
(1) Connect equipment as shown ir figure 3-1.
(2) Position UUT controls as follows:
(a) START/CW, MARKER 1 START/ CW, MARKER 2 STOP, and STOP/ $/ \mathrm{F}$ controls to 3 v on calibrator scale.
(b) FUNCTION START STOP pushbutton pressed.
(c) SWEEP SELECTOR switch to CW.
(3) Set calibrator FUNCTION SELECTOR to SWP REF AM.
(4) Multimeter indicates between 2.9 and 3.1 vdc.
(5) Press UUT FUNCTION MARKER SWEEP pushbutton.
(6) Multimeter indicates between 2.9 and 3.1 vdc.
(7) Position UUT controls as follows:
(a) SWEEP SELECTOR switch to MANUAL.
(b) MANUAL SWEEP control fully counterclockwise.
(8) Multimeter indicates between 2.9 and 3.1 vdc.
(9) Press UUT FUNCTION START STOP pushbutton.
(10) Multimeter indicates between +2.9 and +3.1 vdc (8690 A), or +2.6 to +3.4 vdc (8690 B).
b. Adjustments.
(1) Repeat performance check steps $\mathrm{a}(2)$ and (3). Adjust UUT START LF ADJ R1 (fig. 3-3) for multimeter indication of 3.0 vdc.
(2) Press UUT FUNCTION MARKER SWEEP pushbutton. Adjust UUT MS START LF ADJ R2 (fig. 3-3) for multimeter indication of 3.0 vdc .
(3) Repeat performance check step a(7). Adjust UUT MS STOP LF ADJ R3 (fig. 3-3) for multimeter indication of 3.0 vdc .
(4) Press UUT FUNCTION START STOP pushbutton. Adjust UUT STOP LF ADJ R4 (fig. 3-3) for multimeter indication of 3.0 vdc .

Figure s-s. Component assembly A1.
(5) Repeat performance check.

3-7. Helix Feedback Amplifier Gain

a. Performance Check.
(1) Position UUT controls as follows:
(a) SWEEP SELECTOR switch to MANUAL.
(b) MANUAL SWEEP control fully clockwise.
(C) FUNCTION START STOP pushbutton pressed.
(2) Set calibrator FUNCTION SELECTOR switch to HELIX FDBK STOP RMP.
(3) Multimeter indicates between -0.1 and +0.1 vdc.
b. Adjustments. Adjust UUT R32 (fig. 3-4) for multimeter indication of 0.00 vdc .

3-8. Marker (Low End)

a. Performance Check.
(1) Position UUT conltrols as follovs:
(a) SWEEP SELECTOR switch to MAN-

UAL.
(b) MANUAL SWEEP control fully counterclockwise.
(c) MARKER 1 START/CW and MARKER 2 STOP controls to 3 v calibrator scale.
(d) AMPLITUDE MOD MARK 1 pushbutton pressed.
(e) AMPLITUDE MOD MARK 2 pushbutton released.

Figure 3-4. Component assembly A4.
(f) MARKER AMP adjustment fully clockwise.
(2) Set calibrator FUNCTION SELECTOR switch to SWP REF AM.
(3) Adjust UUT MARKER 1 START/CW control for maximum dc deflection on oscilloscope (l-4), UUT Mıpointer indicates 3 V on calibrator scale.
(4) Position UUT controls as follows:
(a) AMPLITUDE MOD MARK 1 pushbutton released.
(b) AMPLITUDE MOD MARK 2 pushbutton pressed.
(5) Adjust UUT MARKER 2 STOP control for maximum dc deflection on oscilloscope. UUT M2 pointer indicates 3 V on calibrator scale.

b. Adjustments.

(1) Repeat performance check steps (1) and (2).
(2) Adjust UUT R1 8 (fig. 3-5) for maximum dc deflection on oscilloscope.
(3) Repeat performance check step (4).
(4) Adjust UUT R2 (fig. 3-\$) for maximum dc deflection on oscilloscope.
(5) Repeat performance check.

3-9. Frequency Control (High End)

a. Performance Check.
(1) Position UUT controls as follows:
(a) START/CW, MARKER 1 START/ CW, MARKER 2 STOP and STOP/ ΔF controls to 73 V on calibrator scale.
(b) SWEEP SELECTOR switch to MANUAL.

Figure S-s. Compomant asaembly A11.
(c) MANUAL SWEEP control fully clockwise.
(d) FUNCTION START STOP pushbutton pressed,
(e) All AMPLITUDE MOD pushbuttons released.
(2) Set calibrator FUNCTION SELECTOR switch to SWP REF AM.
(3) Short UUT EXT FM connector with adapter (l-9) and test lead (1-10).
(4) Multimeter indicates between 72.9 and 73.1 vdc.
(5) Press UUT FUNCTION MARKER SWEEP pushbutton.
(6) Multimeter indicates between 72.9 and 73.1 Vdc.
(7) Set UUT SWEEP SELECTOR switch to Cw.
(8) Multimeter indicates between 72.9 and 73.1 vdc.
(9) Press UUT FUNCTION AF pushbutton.
(10) Multimeter indicates between 72.9 and 73.1 vdc .
(11) Press UUT FUNCTION EXT FM pushbutton.
(12) Allow 3 minutes for circuit to stabilize. Multimeter indicates between 72.9 and 73.1 vdc.
(13) Remove adapter (1-9) and cable (I10) from EX.T FM connector.

b. Adjustments.

(1) Repeat performance check steps (1) through (3).
(2) Adjust UUT STOP HF R24 (fig. 3-6) for multimeter indication of 73.0 vdc .
(3) Press UUT FUNCTION MARKER SWEEP pushbutton.
(4) Adjust UUT MARKER STOP HF R30 (fig. 3-6) for multimeter indication of 73.0 vdc .
(5) Set UUT SWEEP SELECTOR switch to Cw.
(6) Adjust UUT MARK START HF R22 (fig. .3-6) for multimeter indication of 73.0 vdc ,
(7) Press UUT FUNCTION Δ F pushbutton. ton.
(8) Adjust UUT Δ F CW R19 (fig. 3-6) for multimeter indication of 73.0 vdc .
(9) Press UUT FUNCTION EXT FM pushbutton Allow 3 minutes for circuit to stabilize.

Figure i-f. Comvonent assembly AR.
(10) Adjust UUT EXT FM ZERO R38 (fig. [3-6) for multimeter indication of 73.0 vdc .
(11) Repeat performance check.

3-10. Marker (High End)

a. Performance Check.
(1) Position UUT controls as follows:
(a) FUNCTION START-STOP pushbutton pressed.
(b) SWEEP SELECTOR switch to CW
(c) AMPLITUDE MOD MARK 1 push. button pressed.
(d) AMPLITUDE MOD MARK 2 pushbutton released.
(2) Set calibrator FUNCTION SELECTOR switch to SWP REF AM.
(3) Adjust UUT MARKER 1 START/CW control for maximum dc deflection on oscilloscope. UUT MI pointer indicates 73 V on calibrator scale.
(4) Position UUT controls as follows;
(a) AMPLITUDE MOD MARK 1 pushbutton released.
(b) AMPLITUDE MOD MARK 2 pushbutton pressed.
(5) Adjust UUT MARKER 2 STOP control
for maximum dc deflection on oscilloscope. UUT M2 pointer indicates 73 V on calibrator scale.

b. Adjustments.

(1) Repeat performance check steps (1) and (2).
(2) Adjust UUT MARK 1 HF R23 fig, 3-6) for maximum dc deflection on oscilloscope.
(3) Repeat performance check step (4)
(4) Adjust UUT MARK 2 HF R31 [fig. (3-6) for maximum dc deflection on oscilloscope. oscilloscope.
(5) Repeat performance check.

3-11. Δ F Bandwidth

a. Performance Check.
(1) Position UUT controls as follows:
(a) FUNCTION AF pushbutton pressed.
(b) SWEEP SELECTOR switch to MAN-

UAL.
(c) $\mathrm{STOP} /{ }^{\prime} \Delta \mathrm{F}$ control to 73 V on calibrator scale.
(d) STOP/ Δ : F control to 73 V on calibrator scale.
(e) MANUAL SWEEP control fully counterclockwise.
(f) A11 AMPLITUDE MOD pushbuttons released.
(2) Set calibrator FUNCTION SELECTOR switch to SWP REF AM. Record multimeter indication.
(3) Turn UUT MANUAL SWEEP control fully clockwise. Record multimeter indication.
(4) Difference in recorded multimeter indications is between.6.8 and 7.2 vdc ,
b. Adjustments. Adjust UUT 1 F BW AD JUST R25 (fig. 3-6) for 7.0 vdc difference in multimeter indications as UUT MANUAL SWEEP control is turned from one limit to the other.

3-12. $\mathbf{J F}$ Center Frequency

a. Performance Check.
(1) Position UUT controls as follows:
((z) FUNCTION START-STOP pushbutton pressed.
(b) SWEEP SELECTOR switch to MANUAL
(c) START/CW control to 3 V on calibra. tor scale.
(d) STOP/'د: F control to 73 V on calibrator scale.
(2) Set calibrator FUNCTION SELECTOR switch to SWP REF AM.
(3) Adjust UUT MANUAL SWEEP control for multimeter indication of 38.0 vdc.
(4) Press UUT FUNCTION AF pushbutton. Multimeter indicates between 2.9 and 3.1 vdc.
b. Adjustments. Adjust UUT $\Delta \mathrm{IF}$ CENT R28 (fig. 3-6) for multimeter indication of 3.0 vdc .

3-13. ΔF Zero

a. Performance Check.
(1) Position UUT controls as follows:
(a) FUNCTION AF pushbutton pressed.
(b) SWEEP SELECTOR switch to MANUAL.
(c) START/CW and STOP//دF controls to 3 V on calibrator scale.
(2) Set calibrator FUNCTION SELECTOR switch to SWP REF AM.
(3) Slowly turn UUT MANUAL SWEEP control from fully counterclockwise to fully clockwise. Multimeter indicates between 2.9 and 3.1 wdc throughout range of MANUAL SWEEP control.
b. Adjustments. Adjust UUT ΔF ZERO R8 (fig. 3-6) for multimeter indication of 3.0 vdc throughout range of MANUAL SWEEP control.

3-14. Power Supply

a. Performance Check. Set calibrator FUNCTION SELECTOR switch to settings listed in table 3-2. At each setting, adjust autotransformer output voltage control for a meter indication of 105, 1.25, and 115 vat. Multimeter (1-3) and voltmeter (1-5) indicate within specified limits.
b. Adjustments.
(1) Set calibrator FUNCTION SELECTOR selector switch to positions listed ir table 3-3 Adjust UUT adjustment listed for multimeter indication.
(2) Repeat the performance check.

Table 3-2. Power Supply

Calibrator FUNCTION SELECTOR switch setting	voltmeter indication (mvac)	Multimeter indication (vdc)
-300 V	<2	-299.5 to -300.5
+275 V	<2	274.7 to 275.3
-6.3 V	<5	-6.25 to -6.35
+20 V	<1	19.8 to 20.2

Table 3-s. Power Supply Adjustments

Calibrator FUNCTON SELECTOR switch setting	UUT Adjustment	Multimeter indication (vde)	
-300 V	R7	(fig. 3-7)	-300
+275	V	R27	(fig. 3-7)
-6.3 V	R16	(fig. 3-8)	+275
+20 V	R21	(fig. 3-8)	-6.3

Figure s-7. Component assembly A5.

Figure s-8. Component aesombly Als.

SECTION IV
 CALIBRATION OF CONTROL UNIT PL-1243/USM-308(V) AND
 RF UNIT HOLDER MX-8333(P)/USM-308(V) (HP MODELS 8706A AND 8707A)

4-1. Equipment Required

Equipment required for calibration performance checks and adjustments is listed in table 4-1
Table 4-1. Equipment and Accessories

	Item	Minimum use specification	Calibration equipment
1-1	Autotransformer (2 required)..	105 to $125 \mathrm{vac}, \pm 3 \%$.	Variable Power Transformer TF--510/U (General Radio model W10MT3A).
1-2	Sweep oscillator	Accepts UUT control unit	Sweep Generator AN/USM-308(V) (Hewlett-Packard model 8690A/B).
1-3	Calibrator .	UT RF unit holder plug-in unit	Electrical Test Equipment Plug-In Unit PL-1239/U (Hewlett-Packard model K04-8690A) or Hewlett-Packard model 11531A, Calibrator.
1-4	Multimeter	Oto \pm : $300 \mathrm{vdc}, \pm$ \%	Multimeter ME-333/U (J-Omega model 217 A).
1-6	Cable assembly	36 inch, double banana plug to black and red alligator clips.	Pomona Electronics model 2BC-AL-36.
1-6	Voltmeter	0 to $10 \mathrm{mvrms} £ \pm \%$	Electronic Voltmeter AN/USM-265 (Hewlett-Packard model 400EL-02).
1-7	Adapter	indingpost to BNC plug....	Connector Adapter UG-1888/U (Pomona Electronics model 1296).
1-8	Oscilloscope	DC ot $1 \mathrm{kHz}, 0$ to 20 vp -p, +3 Ye......	oscilloscope AN/USM-273 (Tektronix Type 453).
1-9	Adapter	ee, BNC plug to 2 BNC jacks	Connector Adapter UG-274B/U (Amphenol model UG-274B/U).
1-10	Adapter	NC jack to double banana plug	Connector Adapter UG-1887/U (Pomona Electronics model 1269).
1-11	Cable assembly (3 required)	36 inch, BNC plug to BNC plug	Pomona Electronics model BNC-C-36.
1-12	RF unit	$2 \mathrm{to} 4 \mathrm{GHz},=10 \mathrm{MHz}$	Electrical Test Equipment Plug-In Test Unit PL-1242/U (Hewiett-Packard model 8699 B).
1-13	Attenuator) db, N plug to N jack, 2 to 4 GHz	Fixed Attenuator CN-1271/U (Weinschel model 210-20).
1-14	Cable assembly	36 inch, RG-213/U, N plug to N plug..	Pomona Electronics model 1658-S-36.
1-15	Electronic counter	2 to $4 \mathrm{GHz}, \pm 0.1 \%$	Digital Readout Electronics Counter AN/USM-257A (Systron-Donner model 1037 B4-F-H) with Frequency Converter CV-2350/U (Systron Donner model 1292).

WARNING

Voltages hazardous to life are present
inside UUT. Use extreme care when making connections or taking measurements inside UUT cabinets.

The figure you asked for has not yet been digitized. Please refer to your paper or microfiche copy as appropriate.

NOT DIGITIZED

The figure you asked for has not yet been digitized. Please refer to your paper or microfiche copy as appropriate.

NOT DIGITIZED

The figure you asked for has not yet been digitized. Please refer to your paper or microfiche copy as appropriate.

NOT DIGITIZED

Figure 4-4. Reiay :i~: si. equipncint setup.
(11) Oscilloscope (I-8) displays square wave.
(12) Release sweep oscillator INT SQ WAVE pushbutton.
b. Adjustments. No adjustments can be made.

4-6. Preset Sweep

a. Performance Check.
(1) Position sweep oscillator controls as follows:
(a) LINE switch to RF.
(b) All AMPLITUPE MOD pushbuttons released.
(c) ALC pushbutton released.
(d) FUNCTION START-STOP pushbutton pressed.
(e) SWEEP SELECTOR switch to MANUAL.
(f) MANUAL SWEEP control fully counterclockwise.
(2) Position UUT \#1 controls as follows:
(a) SWEEP switch to PRESET.
(b) SELECT-STANDBY-OFF switch to SELECT and release.
(c) START and STOP adjustments fully counterclockwise.
(3) Multimeter indicates less than 3.0 vdc .
(4) Turn sweep oscillator MANUAL SWEEP control fully clockwise.
(5) Multimeter indicates less than 3.0 vdc.
(6) Turn UUT \#1 START and STOP adjustments fully clockwise.
(7) Multi meter indicates greater than 73.0 vdc.
(8) Turn sweep oscillator MANUAL SWEEP control fully counterclockwise.
(9) Multimeter indicates greater than 73.0 vdc.
(10) Remove calibrator from UUT cavity \#1 and install in cavity \#2.
(11) Repeat steps (1) through (9) above with UUT \#2 controls.
(12) Remover. calibrator from UUT cavity \#2 and install in cavity \#3.
(13) Repeat steps (1) through (9) above with UUT \#3 controls.
b. Adjustments. No adjustments can be made.

4-7. Frequency Accuracy

a. Performance check.
(1) Connect equipment as shown in figure 4-5.

Table 4-2. Relay Circuit Check

Calibrator FUNCTIOY SELECTOR switch se! bing	Multimeter indication (vde)	Voltmeter indication (mivrms)
-300 V	-299.5 to -300.5	≤ 2
+275 V	+274.7 to +275.3	≤ 2
+20 V	+19.8 to +20.3	≤ 1
ANODE/START AMP*	100 to 120	-
HELIX (10:1)/HELIX (1.1 AC)*	$+10 \text { to }+20$ (record indication)	≤ 2
HELIX (10:1)/HELIX (1:1 AC)**	200 to 240	≤ 10
COL (10:1)/BLANKING*	10 to 12.5 greater than helix indication recorded.	-

Figure 4-5. Frequency accuracy, equipment setup.
(2) Position sweep oscillator controls as follows:
(a) LINE switch to RF.
(b) AMPLITUDE MOD pushbuttons all released.
(c) ALC pushbutton released.
(d) FUNCTION START-STOP pushbutton pressed.
(e) SWEEP SELECTOR switch to CW.
(f) START/CW control to 0 on logging scale.
(8) Set RF unit (1-12) selector switch to 2-4 GHz.
(4) Set UUT \#I SWEEP switch to NORMAL.
(5) Set and release UUT \#1 SELECT-STANDBY-OFF switch to SELECT.
(6) Turn RF unit POWER LEVEL control fully clockwise.
(7) Set sweep oscillator START/CW control to logging scale settings listed in table 4-3. Electronic counter (1-15) indicates within specified limits.
(8) Position sweep oscillator controls as follows:
(a) FUNCTION START-STOP pushbutton pressed.
(b) SWEEP SELECTOR switch to MAN. UAL.
(c) MANUAL SWEEP control fully clockwise.
(9) Turn sweep oscillator STOP/AF control to logging scale settings listed in table 4-3. Electronic counter indicates within specified limits.

Table 4-s. Frequency Accuracy

$\begin{aligned} & \text { Swep oseillator } \\ & \text { START/CW or } \\ & \text { settingu } \end{aligned}$	Electronic eounter Indicetion (GHz)
0	1.99 to 2.01
50	2.99 to 3.01
100	3.99 to 4.01

b. Adjustments. No adjustments can be made.

4-8. Frequency Resettability

a. Performance Check.
(1) Connect equipment as shown ir figure 4-5.
(2) Position sweep oscillator controls as follows:
(a) LINE switch to RF.
(b) START/CW control to 50 on logging scale.
(c) All AMPLITUDE MOD pushbuttons released.
(d) ALC pushbutton released.
(e) FUNCTION START-STOP pushbut. ton pressed.
(f) SWEEP SELECTOR switch to CW.
(3) Set and release UUT \#I SELECT-STANDBY-OFF switch to SELECT.
(4) Record electronic counter indication.
(5) Press UUT control unit \#2 pushbutton (top row).
(6) Press UUT control unit \#1 pushbutton (top row).
(7) Electronic counter indicates between -10 and +10 MHz of frequency recorded in step (4) above.
b. Adjustments. No adjustments can be made.

SECTION V

CALIBRATION OF ELECTRONIC TEST EQUIPMENT PLUG-IN UNITS Pl-1240/USM-308(V) AND PL-1304/USM-308 (V)
 AND HP MODELS 8691A, 8691A OPT 200, 8692A, 8693A, 8693A OPT 200, 8693B,8694A, HOI-8694A, HO2-8694A, 8694B,8695A, 8696A, AND 8697A

5-1. Equipment Required

Equipment required for calibration performance checks and adjustments is listed in table 5-1
Table 5-1. Equipment and Accessories

	It em	Minimum use speciflcation	Calibration equipment
1-1	Autotransformer	105t0125vac, $\pm 3 \%$	Variable Power Transformer TF-510/ U (General Radio model W10MT3A).
1-2	Sweep oscillator	Accepts UUT	Sweep Generator AN/USM-308(V) (Hewlett-Packard model 8690 B).
1-3	Electronic counter with plug-in converter.		Digital Readout Electronic Counter AN/USM-257A (Systron Dormer model 1037B4-F-H) with Frequency Converter CV-2350/U (Systron Donner model 1292) and (model 129 S).
1-4	Power meter...	1 to $10 \mathrm{mw}, \pm 3 \%$	Radio Frequency Power Test Set AN USM-260 (Hewlett-Packard mode 431C) with Thermistor Mount MX 7772/U (Hewlett-Packard model 478A) and (models P486A, K486A, and R486A).
1-5	Attenuator	4.0to12.4 GHz,20db.	Fixed Attenuator CN-1271/U (Weinschel model'. 210-20).
1-6	Cable assembly	36 inch, RG-213/U, N plug to N plug	Radio Frequency Cable Assembly CG 3544/U (Pomona Electronics mode 1658-S-36).

Sec footnote for column 90 table 5-2C

CAUTION

During this procedure, if more than 10 mw is applied to power meter (1-4), damage could result that would produce an unsatisfactory calibration performante.

NOTE

Perform paragraphs 5-2 through 5-5 consecutively with each RF unit to be calibrated.

5-2 Preliminary Procedure

a. Install UUT in sweep oscillator (1-2). Install UUT scale in sweep oscillator.
b. Adjust autotransformer (1-1) output voltage control to minimum.
c. Connect sweep oscillator power cord to autotransformer.
d. Adjust autotransformer output voltage control for a meter indication of 115 vac.
e. Energize equipment and allow sufficient time for equipment to warm up and stabilize.
f. Turn UUT POWER LEVEL control to the low end of the range.

5-3. Frequency Accuracy

a. Performance Check.
(1) Connect UUT output connector to electronic counter (1-3) mixer input with cable assembly (1-6).
(2) Position sweep oscillator controls as follows:
(a) SWEEP SELECTOR switch to CW (MANUAL for items listed in table 5-2C).
(b) FUNCTION START-STOP pushbutton pressed. (FUNCTION $\Delta \mathrm{F}$ pressed for items listed in table 5-2C)
(c) All AMPLITUDE MOD pushbutton released.
(d) ALC pushbutton released.
(e) STOP/AF control to maximum clockwise.

NOTE

Refer to the power indication in table 5-3 and use an attenuator between the UUT and the frequency counter for those units above 30 mw .
(3) Turn UUT POWER LEVEL control to midrange.
(4) Turn sweep oscillator START/CW control to settings listed in table 5-2. Electronic counter indicates within specified limits.
b. Adjustments.
(1) Turn sweep oscillator START/CW control to settinge listed in table 5-2. Adjust UUT adjustment listed (fig. 5-1) for specified electronic counter indication.
(2) Adjustments interact. Repeat adjustment step (1) until no further adjustment is required.
(3) Repeat performance check.

5-4. Frequency Stability

a. Performance Check.
(1) Adjust sweep oscillator START/CW control for electronic counter indication that corres-
ponds with the middle frequency of each plug-in listed in ables 5-2 A, B, and C.
(2) Adjust autotransformer for 105, 125, and 115 vac output.
(3) Electronic counter indicates between the limits specified on that line of the tables.
Table 5-2A. Frequency Accuracy for Plug-In Unit
PL-1240/USM-s08 (v)

Sweep oscillatwr START/CW control (GHz)	Electronic counter indication (GHz)		UUT Adjustment (fig. 5-1)
	Minimum	Maximum	A2R13 ${ }^{2}$
4.4	3.98	4.02	-
4.8	4.38	4.42	-
5.2	4.78	4.82	-
5.6	6.18	5.22	-
6.0	5.58	5.62	A2R12 ${ }^{2}$
6.4	5.98	6.02	-
6.8	6.38	6.42	-
7.2	6.78	6.82	-
7.6	7.18	7.22	-
8.0	7.58	7.62	A1R24

'These two resistors are reversed on some models.
Table 5-2B. Frequency Accuracy for Plug-I:
PL-1304/USM-S08(V).

Sweep oscillator START/CW control (GHz)	Electronic counter indication (GHz)		UUT $\underset{\text { (fig. } 6-1 \text {) }}{\text { Adjustment }}$
	Minimum	Maximum	
8.0	7.96	8.04	A2R12 ${ }^{\text {a }}$
8.4	8.36	8.44	-
8.8	8.76	8.84	-
9.2	9.16	9.24	-
9.6	9.56	9.64	-
10.0	9.96	10.04	-
10.4	10.36	10.44	A2R13 ${ }^{\text {a }}$
10.8	10.76	10.84	-
11.2	11.16	11.24	-
11.6	11.56	11.64	-
12.0	11.96	12.04	-
12.4	12.36	12.44	A1R24

1 Theae two resistors are reversed on some models.

EL6625-2402-35/1-TB-5-1

Figure 5-1. Typical RF plug-in unit, adjustment locations.

Table 5-2C. Frequency Accuracy for Other RF Plug-In Units Frequency (GHz)

$\begin{aligned} & \text { Mode } \\ & 80941 \end{aligned}$	$\begin{aligned} & \text { Mber } \\ & \text { B6011. } \\ & \text { opt. } 200 \end{aligned}$	8692A	8693A	8693. 200	8664A	H01-8694A	H02-8694A	8695A	8696A	8697A
2.000	2.50	4.000	8.000	6.750	12.40	12.40	- Elm -	18.00	26.90	40.00
1.900	2.39	3.800	7.600	6.425	11.96	11.86	10.60	17.44	25.65	38.65
1.800	2.28	3.600	7.200	6.100	11.52	11.32	10.20	16.88	24.80	37.30
1.700	2.17	3.400	6.800	5.775	11.08	10.78	9.800	16.32	23.95	35.95
1.600	2.06	3.200	6.400	5.450	10.64	10.24	9.400	15.76	23.10	34.60
1.500	1.95	3.000	6.000	5.125	10.20	9.700	9.000	15.20	22.25	33.25
1.400	1.84	2.800	5.600	4.800	9.760	9.160	8.600	14.64	21.40	31.90
1.300	1.73	2.600	5.200	4.475	9.320	8.620	8.200	14.08	20.55	30.55
1.200	1.62	2.400	4.800	4.150	8.880	8.080	7.800	13.52	19.70	29.20
1.100	1.51	2.200	4.400	3.825	8.440	7.540	7.400	12.96	18.85	27.85
1.000	1.40	2.000	4.000	3.500	8.000	7.000	7.000	12.40	18.00	26.50

Tolerance for each indication is $\pm 0.8 \%$.
${ }^{2}$ Refer to paragraph, 26 section III.J. including table 68 and figure 60 in TM $9-4931-294-15 / 1$ for the calibration test setup for 8695A, 8696A and 8897A RF plug-in units.
b Adjustments. No adjustments can be made.

5-5. RF Output

a. Performance Check.
(1) Connect equipment as shown in figure
(2) Turn UUT POWER LEVEL control fully clockwise.
(3) Slowly turn sweep oscillator START/ CW control across the entire frequency range. Record the minimum and maximum power meter (1-4) indications.

EL6625-2402-35/1-TB-5-2
Figure 5-2. RF output calibration, equipment setup.
(4) Minimum power meter indication is listed in table 5-3.
(5) Repeat steps (1) through (4) above for all the plug-in units listed in table 5-3.
(6) Maximum power meter indication is not greater than 10 db above minimum indication (for all units).
b. Adjustments. No adjustments can be made.

Table 5-3. RF Power Output

Model number	Minimumppower meter indication (milliwats)
8691A	100
8691A Opt. 200	100
8692A	70
PL-1240/USM-308(V)	15
8693A	30
8693A Opt. 200	40
H01-8694A	25
H02-6694A	25
8694A	50
PL-1304/USM-308(V)	30
8694B.	30
6695A	... 40
8696A	.- 10
8697A	- 5

SECTION VI
 CALIBRATION OF ELECTRONIC TEST EQUIPMENT PLUG-IN UNITS PL-1241/USM-308(V) AND PL-1241A/USM-308(V) (HP MODELS 8690A AND 8690B)

6-1. Equipment Required

Equipment required for calibration performance checks and adjustments is listed in table 6-1
Table 6-1. Equipment and Accessories

		Minimum use specification	Calibration equipment
1-1	Autotransformer	105 to 125 vac $\pm 3 \%$	Variable Power Transformer TF-510/ U (General Radio model W10MT3A).
1-2	Sweep oscillator	Accepts UU	Sweep Generator AN/USM-308 (V) (Hewlett-Packard model 8690A/B).
1-3	Electronic counter	100 kHz to $110 \mathrm{MHz} \pm 0.05 \%$	Digital Readout Electronic Counter AN/USM-257A (Systron Dormer model 1037 B4-F-H) with Frequency Converter CV-2350/U (Systron Don. ner model 1292).
1-4	Adapter (2 req'd)	BNC jack to N plug	Connector Adapter UG-201A/U (Amphenol model UG201A/U),
1-6	Cable assembly (5 req'd)	36 inch, RG-58C/U, BNC plug to BNC plug.	Pomona Electronics model BNC-C-36.
1-6	Signal generator	1.0 to 10 MHz .	Signal Generator AN/USM-264 (Hew-lett-Packard model 652A).
1-7	Power divider	50-ohm N plugto2N jacks	Radio Frequency Power Divider MX7776/U (Weinschel model 1506).
1-8	Adapter	BNC plu. to N jack	Connector Adapter UG-349/U (Amphenol model UG-349/U).
1-9	Detector	BNC jack to BNC ja	Radio Frequency Detector RF-235/U (Telonic model XD-3A).
1-10	Adapter (2 req'd)	BNC jack to double banana plug	Connector Adapter UG1887/U (Pomona Electronics model 1269).
1-11	Oscilloscope	DC to1 $\mathrm{kHz} \pm 3 \%$	Oscilloscope AN/USM-254 (HewlettPackard model 130 C).
1-12	Voltmeter	0 to 3 vrms $\pm 1 \%$	Electronic Voltmeter AN/USM-265 (Hewlett-Packard model 400EL-02).
1-13	Termination	50-ohm, BNC jack to BNC plug	Electrical Dummy Load DA-471/U (Hewlett-Packard model 11048B).
1-14	Step attenuator	0 to $1 \mathrm{db} \pm 0.25 \mathrm{db}$	Variable Attenuator CN-970/A (Hew-lett-Packard model 355C).
1-16	Multimeter	0 to $11 \mathrm{vdc} \quad \pm 3 \%$.	Multimeter ME-333/U (J-Omega model 217A).
1-16	Power meter	0 to $10 \mathrm{mw} \pm 3 \%$. .	Radio Frequency Power Test Set AN USM-260 (Hewlett-Packard model 431C) with Thermistor Mount MX- $7772 / 4$ (Hewlett-Packard model 478A).
1-17	Adapter	BNC plug to BNC plug..	Connector Adapter UG-491B/U (Amphenol model UG-491B/U).

CAUTION

During this procedure, if more than 10 mw is applied to power meter (1-16), damage could result that would produce an unsatisfactory calibration performance.

6-2. Preliminary Procedure

a. Install UUT and scale into sweep oscillator (1-2).
b. Set autotransformer (1-1) to ON and adjust autotransformer output voltage control to minimum.
c. Connect sweep oscillator power cord to autotransformer.
d. Adjust autotransformer output voltage control for a meter indication of 115 vac.
e. Energize equipment and allow sufficient time for equipment to warm up and stabilize.
f. Set sweep oscillator LINE switch to RF and allow a 15 minute warmup.

6-3. Frequency Range and Accuracy

a. Performance Check.
(1) Connect equipment as ahown ir figure 6-1
(2) Position sweep oscillator controls as follows:
(a) SWEEP SELECTOR to MANUAL.
(b) FUNCTION START-STOP pushbutton pressed.
(c) All AMPLITUDE MOD pushbuttons released.
(d) ALC pushbutton released.
(e) START/CW control to 1 (4 for 8698B).
(f) STOP/ $\Delta \mathrm{F}$ control to 110.
(3) Position UUT controls as follows.
(a) POWER LEVEL switch to +10 DBM.
(b) VERNIER control to fully clockwise (CAL for 8698B Plus the following two control settinga).
(c) 5 MHz CRYSTAL switch to OFF.
(d) FREQ CAL adjustment fully clockwise.
(4) Turn sweep oscillator MANUAL SWEEP control as listed in table 6-2. Set UUT SCALE switch as listed. Electronic counter (l-3) indicates within specified limits.
b. Adjustments. No adjustments can be made.

Figure 6-1. Frequency measurement, equipment setup.

Table 6-2A. Plug-In Unit PL-1241/USM308(V) Frequency Range and Accuracy

$\begin{gathered} \text { SUT } \\ \text { swith metun } \end{gathered}$	Sweep onciliebor MANUAL SWEEP eontrol	Electronic counter indication (MHz)	
		Minimum	Maximum
X. 1	Fully counterclockwise	0.090	0.110
X. 1	Fully clockwise	10.89	11.11
X1	Fully clockwise	108.9	111.1
X1	Fully counterclockwise	0.9	1.1

Table 6-2B. Plug-In Unit PL-1241A/USM-s08(V) Frequency Range and Accuracy

$\begin{gathered} \text { YUT } \\ \text { SCALE } \\ \text { switeh eetinand } \end{gathered}$	MANUTAL ocellintor control	Electronic counter indication (MHz)	
		Minimum	Maximum
X. 1	Fully counterclockwise	0.346	0.454
X. 1	Fully clockwise	10.39	11.61
X1	Fully counterclockwive	3.46	4.54
X1	Fully clockwise	103.9	116.1

6-4. $\mathbf{D F}$ Aceutacy

a. Performance Check,
(1) Position sweep oscillator controls as follows:
(a) FUNCTION \lrcorner F pushbutton pressed.
(b) All AMPLITUDE MOD pushbuttons released.
(c) SWEEP SELECTOR switch to CW
(d) $S T O P / \Delta F$ to 10 ons scale.
(2) Position UUT controls as follows:
(a) SCALE switch to X1.
(b) POWER LEVEL switch to +10DBM.
(c) VERNIER control to fully clockwise
(CAL on PL-1241A,USM-308(V).)
(3) Adjust sweep oscillator START/CW control for 5.000 MHz on electronic counter.
(4) Set sweep oscillator SWEEP SELECTOR switch to MANUAL.
(5) Turn sweep oscillator. MANUAL SWEEP control as listed in table 6-3. Electronic counter indicates within specified limits,
(6)' Repeat step (1) above.
(7) Set UUT SCALE switch to X1,
(8) Adjust sweep oscillator START/CW control for 50.00 MHz on electronic counter.
(9) Repeat step (4) above.
(10) Turn sweep oscillator MANUAL SWEEP control as listed in table 6-4. Electronic counter indicates within specified limits.

Table 6-3. AF Accuracy (X.1) .

Sweep oscillator	Electronic counter indication $\mathbf{~ M H z) ~}$
MANUAL SWEEP control	
Fully counterclock	4.47 to 4.63
Fully clockwise	5.47 to 5.53

Table 6-4. AF Accuracy (X.1)

b. Adjustments. No adjustments can be made.

6-5. Frequency Stability

a. Performance Check.
(1) Position sweep oscillator controls as follows:
(a) SWEEP SELECTOR switch to CW.
(b) START/CW control to 50 .
(c) FUNCTION START-STOP pushbutton pressed.
(d) All AMPLITUDE MOD pushbuttons released.
(2) Position UUT controls as follows:
(a) SCALE switch to X.1.
(b) POWER LEVEL control to +10 DBM.
(c) VERNIER control to CAL.
(3) Adjust sweep oscillator START/CW control for 5.000 MHz on electronic counter.
(4) Adjust autotransformer output voltage control for a meter indication of 105, 125, and 115 vac.
(5) Electronic counter indicates between 4.995 and 5.005 MHz at each setting,
(6) Set UUT SCALE switch to X1.
(7) Adjust sweep oscillator START/CW control for 50.00 MHz on electronic counter.
(8) Adjust autotransformer output voltage control for a meter indication of 105, 125, and 115 vac .
(9) Electronic counter indicates between 49.95 and 50.05 MHz at each setting.
(10) Disconnect equipment.
b. Adjustments. No adjustments can be made.

6-6. Linearity

a. Performance Check.
(1) Connect equipment as shown in figure 6-2.
(2) Position sweep oscillator controls as follows:

Figure 6-2. Linearity measurement, equipment setup.
(a) FUNCTION START-STOP pushbutton pressed.
(b) SWEEP SELECTOR switch to AUTO.
(c) START/CW control to 1 (4 on PL-1241A/USM-308(V)).
(d) STOPAF control to 100.
(e) SWEEP TIME (SEC) switch to .1. 01.
(3) Position UUT controls as follows:
(a) SCALE switch to X1.
(b) POWER LEVEL switch to ODBM,
(c) VERNIER control to CAL.
(4) Adjust signal generator (1-6) controls for output meter indication of 1.0 vrms and electronic counter indication of 1.0000 MHz .
(5) Adjust oscilloscope (1-11) controls for horizontal display of first marker on extreme left graticule line and last marker on extreme right graticule line.
(6) .Markers occur within -0.5 and +0.5 mm of every 1 cm calibration line on horizontal axis.
(7) Set UUT SCALE switch to X1
(8) Adjust signal generator controls for output meter indication of $1.0 \mathrm{vrms}(3.0 \mathrm{vrms}$ on PL-1241A/USM-308(V)) and electronic counter indication of 10.000 MHz .
(9) Repeat steps (5) and (6) above.
(10) Disconnect equipment.
b. Adjustments. No adjustments can be made.

6-7. Power Output

a. Performance Check.
(1) Connect UUT OUTPUT $50 \not 0_{\$(0 h m)}$ con-
nector to voltmeter (1-12) with cable assembly (1-5) and termination (1-13).
(2) Position sweep oscillator controls as follows:
(a) FUNCTION START-STOP pushbutton pressed.
(b) SWEEP SELECTOR switch to CW.
(c) START/CW control to 40.
(3) Position UUT controls as follows:
(a) SCALE switch to X1.
(b) POWER LEVEL switch to + 10DBM.
(c) VERNIER control fully clockwise.
(4) Voltmeter indicates greater than 2.23 vrms (between 0.19 and 0.26 vac on PL-1241A/ USM-308(V)).
(5) Turn UUT VERNIER control to CAL.
(6) Set UUT POWER LEVEL switch to settings listed in table 6-5. Voltmeter indicates within specified limits.
(7) Disconnect equipment.
b. Adjustments.
(1) Position UUT controls as follows:
(a) POWER LEVEL switch to +10 dbm .
(b) VERNIER control fully counterclock-
wise.
(2) Adjust UUT RANGE adjustment, A8R24 (fig. 6-3) for voltmeter indication of 0.223 vat.

NOTE
Earlier models may not have this adjustment.
(3) Turn UUT VERNIER control to CAL
(4) Adjust UUT LEVEL adjustment, A8R23 (fig. 6-3) for voltmeter indication of 0.707 vat.

EL6625-2402-35/1-TB-6-3

Figure 6-s. Plug-In Unit PL-1241A/USM-s08(V), top view.

Table 6-5A. Plug-In Unit PL-1241/USM308(V)
Power Output

UUT	Voltmeter POWER LEVEL indication (rmb)	
	Minimum	
	0.56	0.89
+10	0.178	0.28
0	0.056	0.089
-10	0.0178	0.028
-20	0.0056	0.0085
-30	0.00178	0.0028
-40	0.00056	0.00089

Table 6-5B. Plug-In Unit PL-1241A/USM-s08(V) Power Output

UUT	$\begin{gathered} \text { Voltmeker } \\ \text { indication (vrms) } \end{gathered}$	
POWER LEVEL owitch setting (dBm)		
	Minimum	Maximum
+13	0.84	1.19
+10	0.60	0.84
0	0.19	0.26
-10	0.060	0.084
-20	0.019	0.026
-30	0.0060	0.0084
-40	0.0019	0.0026
-50	0.00060	0.00084

(5) Repeat (1) through (4) above until no further adjustment is required.
(6) Repeat performance check,

6-8. Flatness

a. Performance Check.
(1) Connect equipment as shown in figure 6-4.
(2) Position sweep oscillator controls as follows:
(a) START/CW control to 40.
(b) STOP/ ΔF control to 110 .
(C) FUNCTION START-STOP pushbutton pressed.
(d) SWEEP TIME (SEC) switch to .1-
. 01.
(e) SWEEP SELECTOR switch to CW.
(3) Position UUT controls as follows:
(a) SCALE switch to X1.
(b) POWER LEVEL switch to +10 dbm (0 dbm on PL-1241A/USM-308 (V).
(c) VERNIER control to CAL.
(4) Adjust oscilloscope controls for display of free running sweep.
(5) Alternately set step attenuator (1-14) switch from 10 to 1.1 db (3 to 4 db for PL-1241A/ USM-308(V)) and adjust oscilloscope vertical controls for 4 centimeter deflection between the

Figure 6-4. Flatness measurement, equipment eetup.
two step attenuator settings. This calibrates oscilloscope for $0.25 \mathrm{db} / \mathrm{cm}$ vertical deflection. Do not move oscilloscope vertical controls for remainder of check.
(6) Set step attenuator switch to 10 db (3 db for PL-1241A/USM-308 (V))
(7) Position sweep oscillator controls as follows:
(a) SWEEP SELECTOR switch to AUTO.
(b) START/CW control to 10.
(8) Adjust oscilloscope horizontal gain controls for 10 cm trace. Difference between maximum and minimum vertical deflection points is less than 2.4 cm peak-to-peak.
(9) Set UUT SCALE switch to X1.
(10) Repeat step (8) above.
(11) Disconnect equipment.
b. Adjustments. No adjustments can be made.

6-9. Sweep Reference

a: Performance Check.
(1) Connect multimeter (1-15) to UUT SWEEP REF connector (rear panel) with cable assembly (1-5) and adapter (1-10).
(2) Position sweep oscillator controls as follows.
(a) FUNCTION START-STOP pushbutton pressed.
(b) SWEEP SELECTOR switch to MANUAL.
(c) START/CW control to 10.
(d) STOP/AF control to 110,
(3) Set UUT SCALE switch to X.1.
(4) Turn sweep oscillator MANUAL SWEEP control fully counterclockwise.
(5) Multimeter indicates between 0.8 and 1.2 vdc.
(6) Turn sweep oscillator MANUAL SWEEP control fully clockwise.
(7) Multimeter indicates between 10. and 12 vdc .
(8) Set UUT SCALE switch to X1.
(9) Repeat steps (4) through
(7) above.
b. Adjustments. No adjustments can be made.

6-10. Auxiliary (Uncalibrated) RF Output

a. Performance Check.
(1) Connect power meter (1-16) thermistor mount to UUT AUX OUTPUT connector (rear panel) with adapter (1-8).
(2) Position sweep oscillator controls as follows:
(a) START/CW control to 100.
(b) FUNCTION START-STOP pushbutton pressed.
(c) SWEEP SELECTOR switch to CW.
(d) All AMPLITUDE MOD pushbuttons released.
(3) Set UUT SCALE switch to X.1.
(4) Power meter indicates greater than -15 dbm (0.3 mw for PL-1241A/USM-308(V)).
(5) Set UUT SCALE switch to X1.
(6) Power meter indicates greater than -15 dbm (0.3 mw for PL-1241A/USM-308(V)).
(7) Disconnect equipment .
b. Adjustments. No adjustments can be made.

6-11. VTO Output

a. Performance Check.
(1) Connect power meter thermistor mount to UUT V.T.O. OUTPUT connector (rear panel) with adapter (1-8).
(2) Position sweep oscillator controls as follows:
(a) FUNCTION START-STOP pushbutton pressed,
(b) SWEEP SELECTOR switch to MANUAL.
(c) START/CW control to 1 (4 on PL-1241A/USM-308(V)).
(d) STOP/AF control to 110 .
(3) Set UUT SCALE switch to X.1.
(4) Turn sweep oscillator MANUAL SWEEP control from limit to limit. Power meter indicates greater than $-15 \mathrm{dbm}(0.03 \mathrm{mw}$ for PL--1241A/USM-308(V)).
(5) Set UUT SCALE switch to X1 and re. peat step (4) above.
b. Adjustments. No adjustments can be made.

6-12. Internal Square Wave

a. Performance Check,

(1) Connect equipment as shown ir figure 6-5.
(2) Position sweep oscillator controls as follows:
(a) SWEEP SELECTOR switch to CW.

Figure 6-5. Internal square wave, equipment setup.

Figure 6-6. Crystal oscillator, equipment setup.
(b) START/CW control to 50 .
(c) INT SQ WAVE pushbutton pressed.
(3) Set UUT SCALE switch to X1.
(4) Oscilloscope displays square wave.
b. Adjustments. No adjustments can be made.

6-13 Crystal Oscillator

a. Performance Check.
(1) Connect equipment as shown ir figure 6-6.
(2) Position sweep oscillator controls as follows:
(a) SWEEP SELECTOR to MANUAL.
(b) START/CW control to 100 .
(c) $\mathrm{STOP} / \Delta \mathrm{F}$ control to 10 (1 on $\Delta \mathrm{F}$ scale),
(d) FUNCTION Δ : F pushbutton pressed.
(e) All AMPLITUDE MOD pushbuttons released.
(3) Position UUT controls as follows:
(a) SCALE switch to X.1.
(b) $5-\mathrm{MHz}$ CRYSTAL switch to ON.
(4) Adjust sweep oscillator MANUAL SWEEP control for oscilloscope display of zero beat.
(5) Electronic counter indicates between 9.999 and 10.001 MHz .
b. Adjustments. No adjustments can be made.

SECTION VII

CALIBRATION OF ELECTRONIC TEST EQUIPMENT PLUG-IN UNIT PL-1242/USM-308(V) (HP MODEL 8699B)

7-1 Equipment Required

Equipment required for calibration performance checks and adjustments is listed intable 7-1.
Table 7-1. Equipment and Accessories

	TTEM	Minimum use specification	Calibration equipment
1-1	Autotransformer	105 to $126 \mathrm{vac}=3 \%$	Variable Power Transformer TF-510/ U (General Radio model W10MT3A).
1-2	Sweep oscillator	Accepts UUT	Sweep Generator AN/USM-308 (V) (Hewlett-Packard model 8690A/B),
$1-3$	Power meter	. 0 to $10 \mathrm{mw} \pm 3 \%$.	Radio Frequency Power Test Set AN USM-260 (Hewlett-Packard model 431C) with Thermistor Mount MX 7772/U (Hewlett-Packard mode 478A).
1-4	Attenuator	20 db , N plug to N jack	Fixed Attenuator CN-1201-U (Weinschel model 60-20).
1-6	Attenuator	$20 \mathrm{db}, \mathrm{N}$ plug to N j	Fixed Attenuator CN-2171/U (Weinschel model 210-20).
1-6	Cable assembly .	36 inch, RG-213/U, N plug to N plug	Radio Frequency Cable Assembly CG 3544/U (Pomona Electronics mode 1658-S-36).
1-7	Electronic counter	0.1 to 4.0 GHz, $\pm 0.03 \%$	Digital Readout Electronic Counter AN/USM-257A (Systron-Dormer model 1037B4-F-H) with Frequency Converter CV-2350/U (Systron-Donner model 1292).
1-8	Multimeter	0 to $73 \mathrm{vdc} \pm 0.5 \%$	Multimeter ME-333/U (J-Omega model 217A).
1-9	Cable assembly	36 inch, double banana plug to black and red alligator clips.	Pomona Electronics model 2BC-AL-36.
1-10	Crystal detector.	0.1 to 4.0 GHz .	Radio Frequency Deteetor RF-210/U (Hewlett-Packard model 423A-02).
	Cable assembly	36 inch, RG 58C/U, BNC plug to BNC plug.	Pomona. Electronics model BNC-C-36.
1-12	Oscilloscope	DC to $1 \mathrm{kHz}+3 \%$.	Oscilloscope AN/USM-273 (Tektronix model 462).

CAUTION

Do not apply greater than 10 mv to power meter (1-3) or unsatisfactory performance may result.

7-2. Preliminary Proredure

a. Install UUT and UUT scale into sweep oscillator (1-2).
b. Set autotransformer (1-1) to ON and adjust output voltage control to minimum.
c. Connect sweep oscillator power cord to autotransformer,
d. Adjust autotransformer output voltage control for a meter indication of 115 vac.
e. Energize equipment.
f. Set sweep oscillator LINE switch to RF and allow a 15-minute warmup.

7-3. Output Power and Flatness

a. Performance Check.
(1) Connect equipment as shown ir figure 7-1.
(2) Position sweep oscillator controls as follows:
(a) SWEEP SELECTOR switch to CW.
(b) ALC pushbutton released.
(c) FUNCTION START STOP pushbutton pressed.
(d) All AMPLITUDE MOD pushbuttons released.
(3) Position UUT controls as follows:
(a) Frequency range switch to $.1-2 \mathrm{GHz}$.
(b) POWER LEVEL control fully clockwise.
(4) Slowly turn sweep oscillator START/ CW control from 0.1 to 2.0 GHz . Record power meter minimum and maximum indications.
(5) Minimum power meter indication is greater than -7 dbm. Maximum indication does not exceed minimum by more than 14 db .

Figure 7-1. Power output and flatness, equipment setup
(6) Set UUT frequency range switch to 2-4 GHz.
(7) Replace attenuator (1-4) with attenuator (1-5).
(8) Slowly turn sweep oscillator START/ CW control from 2.0 to 4.0 GHz . Record power meter minimum and maximum indications.
(9) Minimum power meter indication is greater than -12 dbm . Maximum indication does not exceed minimum by more than 14 db .
b. Adjustments.
(1) Repeat performance check steps (1) through (3).
(2) Adjust sweep oscillator START/CW control for minimum indication on power meter.
(3) Adjust UUT POWER ADJ AIR40 (fig. 7-2) for power meter indication of -7 dbm .

7-4. Frequency Range and Accuracy Check

a. Performance Check.
(1) Connect equipment as shown in figure 7-3.
(2) Position sweep oscillator controls as follows:
(a) SWEEP SELECTOR switch to CW.
(b) FUNCTION START STOP pushbutton pressed.
(C) All AMPLITUDE MOD pushbuttons released.
(d) ALC pushbutton released.
(3) Turn UUT POWER LEVEL control fully clockwise.
(4) Turn sweep oscillator START/CW control to settings listed in table 7-2. Set UUT frequency range switch as listed. Electronic counter (1-7) indicates within specified limits.
b. Adjustments.
(1) Connect equipment as shown in figure 7-3.
(2) Connect multimeter (1-8) between UUT A1TP5 fig. 7-2 and chassis ground with cable assembly (1-9).
(3) Set UUT frequency range switch to 2 4 GHz .
(4) Adjust sweep oscillator START CW control for multimeter indication of 3.00 wit.
(5) Adjust UUT 2.0 GHz ADJ AIR28 (fig. 7-2) for electronic counter indication of 1.997 GHz.
(6) Adjust sweep oscillator START CW control for multimeter indication of 73.00 vdc .

Figure 7-2. Plug-In Unit PL-1242/USM-308(V), top view showing adjustment locations.

EL6625-2408-35/1-TB-7-3

Figure 7-3. Frequency range and accuracy, equipment setup.
(7) Adjust UUT BAND-WIDTH ADJ A1R4 (fig. 7-2) for electronic counter indication of 4.003 GHz .
(8) Replace attenuator (1-5) with attenuator (1-4).
(9) Set UUT frequency range switch to .1-2 GHz.
(10) Adjust sweep oscillator START/CW control for multimeter indication of $6,50 \mathrm{vdc}$.
(11) Adjust UUT 0.1 GHz ADJ A1R29 fig, 7-2) for electronic counter indication of 0.097 GHz.
(12) Disconnect multimeter.
(13) Repeat performance check.

7-5. Internal Square Wave

a. Performance Check.
(1) Connect equipment as shown in figure [7-4.
(2) Position sweep oscillator controls as follows:
(a) INT SQ WAVE pushbutton pressed.
(b) START/CW control to 3.0 GHz .
(3) Position UUT controls as follows:
(a) POWER LEVEL control fully clockwise.
(b) Frequency range switch to $2-4 \mathrm{GHz}$.
(4) Oscilloscope (1-12) displays square wave.
b. Adjusments: No adjustments can be made.

Table 7-2. Frequency Range and Accuracy

UUT	Sweep oscillator	Enecitanition (COuntier	
$\begin{aligned} & \text { Frequency evange } \\ & \text { swifen seting } \end{aligned}$	contifor selting		
		Minimum	1 Maximum
2-4 GHz	2.0 GHz on high scale	1.99	2.01
2-4 GHz	4.0 GHz on high scale	3.99	4.01
.1-2 GHz	0.1 GHz on low scale	0.09	0.11
. $1-2 \mathrm{GHz}$	2.0 GHz on low scale	1.99	2.01

*Replace attenuator (1-5) with attenuator (1-4).

7-6. Final Procedure

a. Deenergize and disconnect all equipment.
b. In accordance with TM 38-750, annotate and affix calibration label (DA Label 80). When the unit under test cannot be adjusted within tolerance or utilized with an appropriate correction chart, annotate and affix red tag (DA Form 2417).

Figure 7-4. Internal squure wuve, equipment setup.

By Order of the Secretary of the Army:

Official:
CREIGHTON W. ABRAMS General, United States Army

VERNE L. BOWERS
Major General, United States Army
The Adjutant General

Distribution:

To be distributed in accordance with DA Form 12-34 (qty rqr block No. 75) Requirements for Calibration Procedure Publications.

* U.S. GOVERNMENT PRINTING OFFICE: 1985-546-652/19352 Reqion 4.

[^0]: *This change supersedes Change 1, 29 July 1975, and Change 2, 7 September 1977.

[^1]: ${ }^{1}$ Minimum use specifications are the principal paramerters required for performances of the calibration, and are included to assist in the selection

[^2]: Note this Indication.
 Add 12.6 volts to the HELIX (10:1) HELIX (1:1 AC) voltage.
 Se figure 2-1) for typical oscilloscope presentation.

